你还在汽车金融上“淘金”,我们却看好“卖水”机会
基本所有项目不是已经有了汽车金融业务就是在规划执行中,其火热程度不亚于任何风口
来源:逸夫品金融
“18世纪美国西部的淘金热,真正赚到盆满钵满的,实际上是矿口的卖水人。”
差不多一年时间,互联网汽车领域内汽车后市服务、汽车电商、车联网等几乎所有的头部项目,他们都在谈论一个共同的词——汽车金融,基本所有项目不是已经有了汽车金融业务就是在规划执行中,其火热程度不亚于任何风口。
风险控制,是所有金融行业公司的死穴,汽车金融同样如此。传统的汽车金融项目,一放大规模就会死于风控,风控严格则成长缓慢收益低于资金成本。就这个核心问题,给出的答案:大数据驱动的贷前,贷中,贷后风控管理是唯一高效的解决方案,也是互联网武装的汽车金融战胜传统汽车金融的唯一机会。
显然,数据驱动的风控服务成为了汽车金融产品的刚需。于是,互联网汽车事业部决定梳理一下提供正在提供这些刚需的数据服务商,更重要的是,分析他们上游的数据源头以及潜在的创业机会。
汽车金融淘金格局概要
汽车交易流通环节中牵扯不同的角色(车主,4S,二级经销商等),不同的交易方式(以租代售,分期,抵押,质押等),不同金融资产载体(车辆,车险,税费,后市服务等),排列组合后我们可以梳理出当下几种主流的汽车金融产品,以及这些产品背后需要的风控管理:
如上图所示,这些汽车金融产品需要不同层级的风控管理,从基于事实的定型到基于模型的预测、评估和定价。
越为复杂的汽车金融产品需要覆盖的风控管理层级越宽,需要纵向结合的数据源也越多。
从纵向所需要的数据源看,完整严谨的车抵贷交易需要在贷前查询车型配置数据,车辆出厂数据,车辆交易数据,保险出险数据,维护保养数据,违章数据,个人信用数据,在贷中持续监控驾驶轨迹数据以及出险,维护保养,违章等数据。
从车抵贷的例子可以看出,车与人,动态与静态数据的任何一角缺失都会降低风控的有效性。
降低汽车金融风险不仅要在贷前做好对人与车静态数据的全盘了解,同时也要在贷中动态的对车辆和使用者持续跟踪,只有人车结合,动静结合才能最大程度降低风险。
已经站在矿口的「卖水人」
1、评级&定价——数据高级应用赛道
在这个赛道的项目多为风控数据的使用者和付费方。评级和定价模型是这类公司的核心竞争力,并不向第三方开放使用,他们也更多的被定义为汽车金融领域的掘金人。
在定价赛道,类评驾的UBI项目通常将车与人的动态静态数据作为模型的输入因子,输出用户画像和定价分类。在评级赛道,如微贷网等大量车抵贷/库存贷项目则直接基于上游数据服务商提供的数据和设备对贷款方进行评级和资产监控。
2、定型&监控 – 数据整合与基础应用赛道
定型和监控赛道则是真正在整合基础数据源并提供数据服务的领域。通过对上游数据的整合和基础分析,他们向下游应用者提供原始数据或经过基础加工的数据服务,他们是汽车金融领域的卖水人。
如上图,处于监控赛道的项目多在上半区提供车辆的动态轨迹数据服务。提供这类数据服务的公司有三种,一类是车载设备制造商,如华宝,提供物流车轨迹数据与大车司机的个人征信数据;第二类是传统车联网公司,他们的主业是车队管理等应用,但逐渐侧重风控轨迹数据服务,如智信通;第三类则是主旨为汽车金融产品提供轨迹监控的项目,如天易科技,青岛鲁诺,青岛中瑞等。
后来者如何找到黄金「卖水」摊位
根据上图所示,我们基本可以把上游数据源头分为两类。
第一类:某个或多个主体已经拥有全量数据,通过数据服务商正向合作或逆向整合后向下游提供较完整的数据服务,这类数据源包括:
车辆配件数据– 主机厂掌握各自配件数据,数据服务商逆向整合
第二类:数据极度离散,碎片化分布,暂时还没有任何一个主体有能力整合全量数据,这类数据源包括:
从数据领域的创业机会来看,初创公司已经丧失成为第一类数据服务商的机会。拥有全量数据的政府背景主体都在探索自上而下数据变现的路径,自下而上通过众筹,社会化,共享等模式聚合数据的项目会成为系统性打击的对象。
结合数据离散程度和对风控的重要程度,我们认为极度离散化的人车动态数据仍然留给创业者巨大的想象空间。