真正的P2P是怎样控制风险的?

2015-03-10 10:201338

说起P2P,多数金融圈内人士已经并不陌生。国内现有近千家的P2P网贷平台,动辄打出高息诱人的收益率宣传口号以及眼花缭乱的安全承诺。但是在这些浮华表面的背后,关于P2P的风控很多人仍然是一知半解,甚至不少长期P2P圈内的资深玩家对此也是“既没吃过猪肉,也没见过猪跑”。

  说起P2P,多数金融圈内人士已经并不陌生。国内现有近千家的P2P网贷平台,动辄打出高息诱人的收益率宣传口号以及眼花缭乱的安全承诺。但是在这些浮华表面的背后,关于P2P的风控很多人仍然是一知半解,甚至不少长期P2P圈内的资深玩家对此也是“既没吃过猪肉,也没见过猪跑”。
  
  但是不可否认的是,作为一种跳过银行间接贷款融资模式的、一种在借款人和出借人之间直接发生借贷关系的业务模式,P2P业务的核心正在于团队自身的风险定价 能力,即风险管理能力是P2P公司的核心竞争力。那么,P2P公司是如何进行风险管理的?什么样的风控平台是更为有效的呢?
  
  职能明确的风控部门
  
  在信贷金融领域,根据不同借款额度,往往对应的是不同的风控审批手段。从业内看,超过100万以上的借款基本采用与银行相同的借款风控手段,实地真人考察, 另外再加抵押物。而20-100万之间,可以用类似IPC的风控技术,没有抵押物,但较接近银行审核手段,不能集中化审核,容易导致审核标准不一。
  
  而 P2P从本质上讲,更多应该是专注于1-20万之间的信用无抵押借款,这是与银行、小贷和担保公司目前很难覆盖的领域。在这种模式中,风险管理采用总部集中式的数据化风控模式,从而解决审核标准不统一以及审核人员快速扩张需要依赖长期经验积累的问题。
  
  政策和数据分析部下面分成三个主要部分:一是政策制定团队,包括确定目标人群、设计借款产品准入政策、核批政策、反欺诈政策、催收政策等,并固化到决策引擎系统和评分卡;二是数据挖掘分析,对逾期客户进行特征分析、产品盈利分析等;三是数据建模团队,根据数据挖掘,对逾期客户特征数据进行建模分析。政策和数 据分析部的三个部门工作相互关联,工作成果是制定贷款产品政策,包括前端营销、中台审核、后台催收的各项政策制度。
  
  风控审核部主要包括初审部、终审部和稽核部,主要职责是审核判定借款人资料的真实性和有效性,结合决策引擎和评分卡等对客户做出是否核批的决定。催收部按照客户逾期时间长短,分为初催和高催,主要职责是根据催收评分卡和决策引擎,对逾期客户进行催收工作。
  
  小额分散原则
  
  有了职能清晰的风控部门,对于以点对点借款为主要模式的P2P而言,要控制平台整体违约率在较低水准,还要坚持“小额分散”的原则。
  
  先说一下“分散”在风险控制方面的好处,即借款的客户分散在不同的地域、行业、年龄和学历等,这些分散独立的个体之间违约的概率能够相互保持独立性,那么同时违约的概率就会非常小。比如100个独立个人的违约概率都是20%,那么随机挑选出其中2人同时违约的概率为4%(20%^2),3个人同时违约的概率 为0.8%(20%^3),四个人都发生违约的概率为0.016%(20%^4)。如果这100个人的违约存在相关性,比如在A违约的时候B也会违约的概率是50%,那么随机挑出来这两个人的同时违约概率就会上升到10%(20%×50%=10%,而不是4%)。因此保持不同借款主体之间的独立性非常重要。
  
  “小额”在风险控制上的重要性,则是避免统计学上的“小样本偏差”。例如,平台一共做10亿的借款,如果借款人平均每个借3万,就是3.3万个借款客户,如果 借款单笔是1000万的话,就是100个客户。在统计学有“大数定律”法则,即需要在样本个数数量够大的情况下(超过几万个以后),才能越来越符合正态分布定律,统计学上才有意义。因此,如果借款人坏账率都是2%,则放款给3.3万个客户,其坏账率为2%的可能性要远高于仅放款给100个客户的可能性,并 且这100个人坏账比较集中可能达到10%甚至更高,这就是统计学意义上的“小样本偏差”的风险。
  
  对应到p2p网贷上,那些做单笔较大规模的借款的网站风险更大。这也是为什么包括人人贷、有利网等这些对风控要求较高的平台,坚决不做抵押类大额借款的原因。
  
  数据化风控模型
  
  除了坚持小额分散借款原则,用数据分析方式建立风控模型和决策引擎同样重要。小额分散最直接的体现就是借款客户数量众多,如果采用银行传统的信审模式,在还款能力、还款意愿等难以统一量度的违约风险判断中,风控成本会高至业务模式难以承受的水平,这也是很多P2P网贷平台铤而走险做大额借款的原因。
  
  可以借鉴的是,国外成熟的P2P比如LendingClub,以及都是采用信贷工厂的模式,利用风险模型的指引建立审批的决策引擎和评分卡体系,根据客户的行为特征等各方面数据来判断借款客户的违约风险。美国的专门从事信用小微贷业务的Capital One是最早利用大数据分析来判断个人借款还款概率的公司,在金融海啸中,Capital One公司也凭借其数据化风控能力得以存活并趁机壮大起来,现在已经发展成为美国第七大银行。
  
  简单点说,建立数据化风控模型并固化到决策引擎和评分卡系统,对于小额信用无抵押借款类业务的好处包括两个方面:一是决策自动化程度的提高,降低依靠人工审核造成的高成本;二是解决人工实地审核和判断所带来审核标准的不一致性问题。在国内,目前包括人人贷、拍拍贷都在积极推动数据化风控模型的建设, 这也是监管层所乐于看到的。
  
  因此,除了小额分散的风控原则,P2P网贷风控的核心方法在于,通过研究分析不同个人特征数据(即大数据分析)相对应的违约率,通过非线性逻辑回归、决策树 分析、神经网络建模等方法来建立数据风控模型和评分卡体系,来掌握不同个人特征对应影响到违约率的程度,并将其固化到风控审批的决策引擎和业务流程中,来指导风控审批业务的开展。
  
  最后,回到P2P的社会效益这一原点问题上,P2P网贷是为了实现普惠金融的一个创新,它的初衷是让每个人都有获得金融服务的权利,能真正地把理财和贷款带到了普通民众的身边。P2P网贷的出现,填补了我国目前传统金融业务功能上的缺失,让那些被银行理财计划和贷款门槛拒之门外的工薪阶层、个体户、农村的贫困农户、大学生等人群也有机会享受金融服务。而服务这一庞大的群体,如何设计安全、合理的商业模式和恪守风控第一的准则,确保广大投资者的权益更应成为 p2p行业从业者放在第一位思考的问题。
  
  以上内容为网络转载,仅限内部学习使用,不造成投资建议!

         更多内容,欢迎关注微信: financecase

0
标签:风险 
发表评论
同步到贸金圈表情
最新评论

线上课程推荐

火热融资租赁42节精品课,获客、风控、资金从入门到精通

  • 精品
  • 上架时间:2020.10.11 10:35
  • 共 42 课时
相关新闻

国家安全部:金融安则国安,全面增强金融工作本领和风险应对能力

2024-11-15 10:19
2877

国务院印发《关于加强监管防范风险推动保险业高质量发展的若干意见》

2024-09-13 12:55
98258

金融监管总局:保险机构应建立欺诈风险管理信息系统或将现有信息系统嵌入相关功能

2024-08-05 11:42
61558

国家金融科技风险监控中心与360达成战略合作

2024-08-05 11:42
58361

四部门与天津发文:强化监管科技运用和数字金融风险评估

2024-08-05 11:39
50185

金融稳定法草案二审稿完善金融风险防范处置相关规定

2024-06-28 11:55
52970
7日热点新闻
热点栏目
贸金说图
专家投稿
贸金招聘
贸金微博
贸金书店

福费廷二级市场

贸金投融 (投融资信息平台)

活动

研习社

消息

我的

贸金书城

贸金公众号

贸金APP